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Abstract— A powerful technique for optimizing an evolving
system “agent” is co-evolution, in which one evolves the agent’s
environment at the same time that one evolves the agent. Here
we consider such co-evolution when there is more than one
agent, and the agents interact with one another. By definition,
the environment of such a set of agents defines a non-cooperative
game they are playing. So in this setting co-evolution means using
a “manager” to adaptively change the game the agents play,
in such a way that their resultant behavior optimizes a utility
function of the manager. We introduce a fixed-point technique
for doing this, and illustrate it on computer experiments.

I. I

Many distributed systems involve multiple goal-seeking
agents. Often the interactions of those agents can be modeled
as a noncooperative game where the agents are identified with
the players of the game and their goals are identified with
the associated utility functions of the players [7], [8], [12],
[17], [21]. Examples involving purely artificial players include
distributed adaptive control, distributed reinforcementlearn-
ing (e.g., such systems involving multiple autonomous adap-
tive rovers on Mars or multiple adaptive telecommunications
routers), and more generally multi-agent systems involving
adaptive agents [2], [6], [15], [16]. In other examples some
of the agents/ players are human beings. Examples include
air-traffic management [9], multi-disciplinary optimization [4],
[5], and sense, much of mechanism design, including in
particular design of auctions [8], [12], [13].

Sometimes the goals of the players do not conflict; in-
tuitively, the system is “modularized”. However often this
cannot be guaranteed. As an example, it may be that in most
conditions the system is modularized, but that some conditions
cause conflicts among the needs of the players for system-wide
resources (e.g., when an “emergency” occurs). Alternatively,
it may be that the players take physical actions and that under
some conditions the laws of physics couple those actions in
way that makes their goals conflict. Moreover, whenever some
agents are humans, in almost all conditions there will be some
degree of conflict among their goals. Finally, note that even
when there are no conflicts among the goals of the players,
there may be synergies among the players that they can not
readily find if left on their own.

In all of these scenarios there is a need to intervene in
the behavior of the players. However often we do not have

complete control over the behavior of the players. That is
always true if there are communication restrictions that prevent
us from having full and continual access to all of the players.
It is also always true if some of the players are humans. Such
limitations onour control are also typical when the playersare
software programs written by third party vendors.

On the other hand, even when we cannot completely control
the players, often we can set/ modify some aspects of the
game among the players. As examples, we might have a
manager external to the players who can modify their utility
functions (e.g., by providing them with incentives), the com-
munication sequence among them, what they communicate
with one another, the command structure relating them, how
their chosen moves are mapped into the physical world, how
(if at all) their sensory inputs are distorted, or even how
rational they are. The ultimate goal of the manager is to make
such modifications that induce behavior of the players that is
optimal as far as the manager is concerned.

As an example, say some of the players are evolvable soft-
ware systems. Then the game details comprise the environment
in which those systems evolve. So modifying the game details
to optimize the resultant behavior of the players is a variant
of using co-evolution for optimization [1], [3]. The difference
with most work on co-evolution is that in optimal management
of a game we are concerned with the environment of multiple
interacting and evolving systems rather than the environment
of a solitary evolving system.

In the next section we present a simple example that illus-
trates how the behavior of players in a game can be improved
by changing the game, discuss previous related work, and
overview our approach. After that we present our notation.
We then use that notation to introduce a formal framework for
analyzing optimal management. Next we use our framework
to introduce an algorithm for optimal management. After that
we present a computer-based test validating that algorithm.

II. B

To illustrate how changing the details of a game may result
in the players behaving in a way that is better for an external
manager, say we have two players,RowandCol, each of who
has four possible moves (also called “pure strategies”). As
usual, each player has a utility function that maps the joint



pure strategy of the two players into the reals. Say that those
utility functions, (gR, gC), are given by the following bimatrix:
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To play the game each playeri ∈ {Row, Col} independently
chooses a “mixed strategy”, i.e., a probability distribution
Pi(xi) over her set of (four) allowed moves. So the expected
utility for player i is EP(gi) =

∑

xi ,x−i
Pi(xi)P−i(x−i)u(xi , x−i),

whereP−i(x−i) is the mixed strategy ofi’s opponent.
A pair of mixed strategies (PRow,PCol) is a “Nash Equi-

librium” (NE) of the game if for all playersi, EP(gi) cannot
increase ifPi changes whileP−i stays the same. At a NE,
neither player can benefit by changing her mixed strategy,
given her opponents’ mixed strategies. To illustrate, a NE of
the game in Table 1 is the joint pure strategy where Row
plays her bottom-most move, and Col plays her left-most
move. Noncooperative game theory’s starting premise is that
“rational” players will have a NE joint mixed strategy.

Now say that we could induce both players to be “anti-
rational”, that is to try tominimizetheir expected utilities. (For-
mally, this is equivalent to multiplying their utility functions
by -1.) Now the equilibrium of the game occurs where Row
plays the top-most row and Col plays the right-most column.
Note that both players have a higher utility at this equilibrium
than at the NE (4> 1). Moreover, neither player would
benefit if she changed from being anti-rational to being rational
and the equilibrium changing accordingly, regardless of which
rationality her opponent adopted. Accordingly, consider the
scenario where the manager’s goal is to increase the utility
functions of both players. Then if he can infer that joint anti-
rationality does that, and can also induce the players both to
be anti-rational, the manager would benefit.

More generally, the optimal management problem is how
to find changes that the manager can make to the system that
would make it behave in a way that the manager prefers.
In the Probability Collectives [14], [19], [20] approach to
optimal management, one has complete freedom to design the
players in some subsetT of all the players. The remaining
players are treated as exogenous noise, with no attempt to
exploit prior knowledge that they are goal-seeking. Distributed
reinforcement learning and related approaches share these
characteristics [2], [6], [15], [16]. In the Collective Intelligence
approach [21], [22] one only has freedom to design the utility
functions of the players inT, and again treats all other players
as exogenous noise. Most of mechanism design [8], [12],
[13] shares these characteristics (though in mechanism design,
one talks of “conditional payments” to players rather than
“modifications to their utility functions”).

In contrast, here we focus on a more general situation. We
expect that manager may only have partial ability to modify
the players inT, and that those modifications may involve
other characteristics besides their utility functions. Wealso
allow the manager to change system parameters not directly

part of any player. Finally, the players not inT are modeled
as players, rather than treated as noise.

Our approach starts by specifying a parameterized set of
models for the probability distribution of the entire system. To
capture our prior knowledge that the players are goal-seeking,
these models are based on game theory considerations. There
are two types of parameters of our models: those that charac-
terize the behavior of the players, and those that the manager
sets. The former are estimated from observations of system
behavior. The manager then uses those estimates and searches
over the remaining parameters, to find which of the associated
probability distributions are optimal for him. He then setsthose
parameters to their optimizing values.

III. G 

Given any spaceZ, we write the set of functions fromZ
into Z as ZZ. We use a minus sign before a set of subscripts
of a vector to indicate all components of the vector other than
the indicated one(s). We will use the integral symbol with the
measure implicit. So for example for finiteX, “

∫

dx” implicitly
uses a point-mass measure and therefore means a sum. We
write |Z| to indicate the cardinality ofZ.

We use upper cases to indicate a random variable, and lower
cases to indicate a value of that variable. So for example
“P(A | b)” means the full function mapping any valuea
of the random variableA to the conditional probability of
a given the valueb of the random variableB. We will
be loose in distinguishing between probability distributions
and probability density functions, using the term “probability
distribution” and the symbolP to mean both concepts, with
the context making the precise meaning clear if only one of the
concepts is meant. We will also use the Dirac delta symbol
even if its arguments are integers or even symbols. So for
example the expressionδ(a− b) wherea and b are members
of an arbitrary finite space equals 1 ifa = b, 0 otherwise.

We write N to mean the infinite set of all integers not
less than 1, andN ≡ 1, . . . ,N. We will sometimes use
curly brackets to indicate a set of indexed elements without
explicitly specifying the range of the indices. For example,
in an N-player game where each playeri has an associated
variableai , “{ai}” is shorthand for{ai : i ∈ N }. Similarly a− j

is shorthand for{ai : i ∈ N , i , j}. sgn(x) is defined to equal
the sign of the real valuex, with sgn(0) ≡ 0.

When defining a function, the symbol “,” means the
definition holds for all values of the listed arguments. So
for example, “f (a,b) ,

∫

dc r(a)s(b, c)” means the definition
holds for all values ofa andb (as opposed to being an equation
whose solution specifiesa and b). Abusing notation, given a
function F : A→ B, we will sometimes writeF(A) to indicate
the range ofF, but sometimes writeF(A′) to indicate the full
function F evaluated over domainA′.

The unit simplex of possible distributions over a spaceZ is
written ∆Z. Given two spacesA, B, we write∆A,B to mean the
unit simplex over the Cartesian productA

�
B. Similarly,∆A|b

indicates the set of all distributions ofA conditioned onb, and
∆A|B indicates the set of all functions fromB into ∆A, i.e, the



set of all conditional distributionsP(A | b), b ∈ B. Finally,
given a Cartesian product spaceX =

�
i Xi , we write ∆χ to

indicate the Cartesian product
�

i ∆Xi . So∆χ is the set of all
product distributions overX. Similarly, ∆χ|a is

�
i ∆Xi | a, the

set of all product distributions overX conditioned ona.

IV. T     

A. Exact State Information

Say we have a repeated game, with the set of possible
system states (states of Nature) given byΘ, and the set of
possible joint moves by the players given byX [8], [12].
For simplicity, say this is a stationary game of complete state
information [12]. So we can dispense with a special space of
possible signals to the players — at every iteration every player
knows the current state of Nature exactly. In fact, we restrict
attention to behavior strategies by the players that only depend
on that preceding state of Nature; every player’s behavioral
strategy is a conditional distribution over the possible moves
of that player conditioned on the preceding state of Nature.
Also for simplicity, we takeΘ and X finite.

We write the (fixed) conditional probability of the next state
given the current state and the next joint move as

π(θt+1, θt, xt+1) , P(θt+1 | θt, xt+1) (2)

where t ∈ N, θt+1, θt ∈ Θ and xt+1 ∈ X. The joint behavioral
strategy of the players at timet is the distribution

P(xt+1 | θt) =
∏

i

P(xi
t+1 | θt)

,

∏

i

σi
t(x

i
t+1, θt). (3)

(Note that it is a matter of conventional whether we have the
index onx be t or t + 1; we choose it to bet + 1 so that the
behavioral strategy of the players is formulated as the movethe
players will make given the system state they just observed.)

Intuitively, each componentxi of x is set independently
of the other components by playeri, in a completely free
manner. It is in how those moves affect the next state of Nature
that “constraints” can arise that physically couple the devices
controlled by the players. In general, we place no restrictions
on the form of eachP(Xi

t+1 | Θt); they are to be set solely by
associated game-theoretic considerations.

Given this, the updating rule for the distribution overΘ is

P(θt+1) =
∫

dθtdxt+1 π(θt+1, θt, xt+1)
∏

i

σi
t(x

i
t+1, θt)P(θt) (4)

This is the transition equation for a Markov process
taking P(Θt) to P(Θt+1), where the transition matrix
∫

dxt+1 π(Θt+1,Θt, xt+1)
∏

i σ
i
t(x

i
t+1,Θt) is parameterized by

the behavioral strategies of the players. Write this matrix as
A(Θt+1,Θt;σt), or A(σt) for short, whereσt is the vector of
all players’ behavioral strategies at timet. Similarly write the
update equation Eq. 4 asP(Θt+1) = A(σt)P(Θt).

For simplicity, we restrict attention to scenarios where at
any momentt, the goal of each playeri is to maximize an
expected associated utilitygi : Θ→ R evaluated at timet + 1.

So our players are single-step receding horizon controllers.
(An example of an alternative is where each player wants
to maximize the expectation of a discounted sum of future
rewards.) Expanding, we write that expected utility as

E[gi(Θt+1)] =

∫

dθt+1 P(θt+1)gi(θt+1)

=

∫

dθt

[∫

dθt+1 A(θt+1, θt;σt)g
i(θt+1)

]

P(θt).

(5)

Now plug in the definition ofA to get

E[gi(Θt+1)] =

∫

dθt P(θt)
[

∫

dxt+1

∏

j

σ
j
t (x

j
t+1, θt) ×

∫

dθt+1 π(θt+1, θt, xt+1)gi(θt+1)
]

,

∫

dθt P(θt)
∫

dxt+1

∏

j

σ
j
t (x

j
t+1, θt)γ

i(xt+1; θt)

(6)

where for all i, γi(xt+1; θt) , E(gi
t+1 | xt+1, θt).

This shows that each value ofθt specifies a separate
conventional strategic form game for the players, with their
θt-specific mixed strategies overXt+1 given by {σi

t = P(Xi
t+1 |

θt) : i ∈ N } and theirθt-specific “effective” utility functions
over Xt+1 given by {γi(Xi

t+1; θt) : i ∈ N )}. The actual timet
is irrelevant to the specification of the game; only the value
of the parameterθt matters, by setting the dependence of the
effective utility functions onXt+1. We write this game jointly
specified byθt, π and the setg , gi} as thegame function
Bπ,g(θt), or sometimes justB(θt) for short. (So for everyθt,
B(θt) is a set ofN utility functions, {γi(X; θt)}.)

Accordingly, consider the following iterated process. First,
at time t we sampleP(Θt) to get aθt. Next, the players set
σt(Xt+1 | θt) to a NE of the gameB(θt). Each playeri then
samples her mixed strategyσi

t+1(Xi
t+1 | θt) to get a movexi

t+1.
This specifies a joint movext+1. After this π(Θt+1, θt, xt+1) is
sampled to get a nextΘ value,θt+1, and the process repeats.

Now in general, there may be more than one NE for some
gameB(θ). More broadly, if the players are allowed to have
bounded rationality, the set of possible joint mixed strategies
adopted by the players for any gameB(θ) may have non-zero
measure. However say we have auniversal refinementwhich
the players jointly use to always pick the same unique joint
distribution for any game, i.e., a mappingR : B(Θ)→ ∆χ. (As
an example, it might that for anyθ, R(B(θ)) is a NE of game
B(θ).) Thenσt(Xt+1, θt) = R(B(θt)).1 This means that for fixed
π andg, σt is a t-independent function fromΘ to ∆χ (changes
to t that don’tθt don’t changeB(θt) and therefore don’t change
σt(Xt+1, θt).) Accordingly we can drop the subscriptt from σt.

R induces a (t-independent) conditional distribution

Pb,R(θt+1 | θt) ,

∫

dxt+1 π(θt+1, θt, xt+1) [R(b)](xt+1) (7)

1Such “point prediction” specifying a single possibleσ for a given π
andg, is the goal of conventional game theory. More sophisticatedmodeling
provides a distribution overσ’s. See [18].



whereb ∈ B(Θ). (Note thatPb,R is well-defined even ifb ,
B(θt).) If we sample this conditional distribution for a current
pair (θt,b = B(θt)) we (stochastically) generate a newΘ value,
θt+1. EvaluatingB(θt+1) then produces a new gameb, and we
can then apply Eq. 7 using that new game, so that the process
repeats. In this way, for any fixedR andπ, the functionB(Θ)
generates a distribution over possible sequences ofθ’s.

An interesting special case is whenB is invertible, i.e.,
where knowing theN function {γi(Xt+1; θt)} uniquely fixesθt.
In such cases we can dispense withΘ; the stochastic dynamics
of the system acrossΘ reduces to a stochastic dynamics across
an associated space of games,B(Θ).2

B. Partial state information

Now say that each playeri not seeθt at iterationt, but only a
“signal” wi

t that is stochastically related toθt. So the updating
rule for the distribution overΘ is now

P(θt+1) =

∫

dθtdxt+1dwt π(θt+1, θt, xt+1) ×














∏

i

[hi
t(x

i
t+1,w

i
t)Ω

i(wi
t, θt)















P(θt) (8)

where hi
t(x

i
t+1,w

i
t) , P(xi

t+1 | wi
t) replacesσi as the strategy

adopted by playeri at time t, and whereP(w | θ) ,
∏

i∈N Ω
i(wi , θ) is the (fixed) conditional distribution speci-

fying how the vector of all the signals of all players,w, is
stochastically generated from a current state of natureθ.3

Now by Bayes’ rule, we can always expand

P(wt)P(θt | wt) = P(θt)P(wt | θt)

= P(θt)
∏

i∈N

Ωi(wi
t, θt) (9)

Plugging this into Eq. 8,

E[gi(Θt+1)] =

∫

dwt P(wt)
∫

dxt+1

∏

j

h j
t (x

j
t+1,w

j
t ) ×

[∫

dθtdθt+1P(θt | wt)π(θt+1, θt, xt+1)gi(θt+1)

]

,

∫

dwtP(wt)
∫

dxt+1

∏

j

h j
t (x

j
t+1,w

j
t )r

i
t(xt+1; wt)

(10)

where the value of the vectorw at timet is wt and where each
r i

t(Xt+1; Wt) is an “effective” utility function for playeri. The

2One example of an invertibleB is presented in the experiments below in
which the two players have different utility functions and there is no manager,
so the thruster angles are fixed. As a more extreme example, letΘ be a subset
of RN, and define eachgi as the associated projection operator,gi (θ) , θi .
Presume further that for allxt+1 ∈ X, θt ∈ Θ, θt+1 ∈ Θ, π(θt+1, θt , xt+1) =
δ(φ(θt , xt+1) − θt+1) for some vectgor-valued functionφ. So for all i, θt and
xt+1, γi (xt+1; θt) = φi (θt , xt+1). Now φ takesX×Θ→ Θ, i.e., X acts onΘ via
φ. Say that eachxi ∈ Xi is a different permutation ofΘi . Then not only is
B(Θt) invertible, but in fact we only need to know theN values{γi (xt+1; θt)}
for one xt+1 to know θt.

3There are many variations of this scenario. For example, we could have
each playeri base her probability of movexi at some timet on a history of
valueswi

t′ for t′ < t in addition towi
t. Many such variations can be mapped

into one another by redefining what the variables mean.

full-rationality equilibrium at timet is any set of strategies
{h j

t } such that simultaneously eachhi
t maximizes the expected

(effective) utility, E(r i
t(Θt; Wt)), as evaluated usingh−i

t .
subject to the strategies of the other players.
Recall that when every player has exact knowledge of the

current state, the players are involved in aθt-indexed strategic
form game, by Eq. 6. So comparing Eq. 6 with Eq. 10, it might
seem that in the partial state information case the players are
involved in “a wt-indexed strategic form game”. This is not
strictly correct though. The problem with the comparison is
that whereas eachhi

t only depends onwi , the effective utility r i
t

depends on the entire vectorw; there is no such distinction in
the arguments of the corresponding functions in Eq. 6. Here
player i can only usewi to choose her move, whereas her
utility function depends on the fullw.

More carefully, what Eq. 10 really shows is that at each time
t the players are involved in a correlated equilibrium game.4

Moreover, since each conditional distributionΩi is fixed in
time, the distributionP(Wt), along with each effective utility
function r i

t, all vary with P(Θt).5 So the correlated game the
players are engaged in varies witht in general, and therefore
so does the full rationality equilibriumht.

To understand this intuitively, note thatP(Θt) changes as
the system evolves, just asθt changes in the exact information
case. (See Eq. 8.) Moreover, in this partial information setting
P(Θt) is a “prior probability” that each playeri uses to infer
whatθt is likely to be, having observed signalwi

t. Accordingly,
changes toP(Θt) changes the optimal behavior strategiesh j

t .
Just asθt defines the game of Eq. 6, soP(Θt) defines the

game of Eq. 10. In both cases, the game the players are
engaged in changes in time. In the partial information case,
the system evolves from onet to the next by going through a
sequence of correlated equilibria. For everyt, the equilibrium
of the associated game specifies a new game whose correlated
equilibrium gives the timet+1 joint move,xt+1. The associated
transition rule is non-Markovian, i.e., since the optimalht

depends onP(Θt) which changes in time, the transition rule
in Eq. 8 is not a Markovian process overX×Θ. In particular,
the dynamics overΘ is not governed by the matrixA.

For this partial information case, the game function has
P(Θt) as its argument rather thanθt (the argument of the game
function in the exact information case), and is parameterized
by Ω in addition to π and g. Similarly, the domain of
any universal refinement for the partial information case is

4One can see this by considering a two-stage extensive form game based
on our original strategic form game. In that two-stage game there is a single
first-moving Nature player who setswt by playing the (potentially time-
varying) distributionP(Wt). The original playersN simultaneously move
in the second stage, and each such playeri ∈ N has an information set
consisting of the valuewi

t. The utility function of the i’th player in the
two-stage game is the associated effective utility function of playeri in
the original game,r i

t . Now if h(Xt+1,W
j
t ) is a full rationality equilibrium

of the original game, then there is no playeri and functionψ such that
∫

dwtdxt+1 P(wt)ht(xt+1,w
j
t )r

i
t(ψ(xi

t+1), x−i
t+1; wt) > E[gi (Θt+1)]. So that ht

is a correlated equilibrium of the two-stage game.
5Integrate both sides of Eq. 9 overθt to see thatP(Wt) depends onP(Θt).

Then use Eq. 9 again to see thatP(Θt |Wt) depends onP(Θt), and therefore
so does eachr i

t .



an expanded version of the domain for exact information
univeral refinements, now being the set of all correlated
equilibrium games. Given such a partial information game
function B̄π,g,Ω and refinement̄R, we can writeht(xt+1,wt) =
R̄[B̄π,g,Ω(P(Θt))](xt+1,wt). Plugging this into Eq. 8 then gives
the dynamics overΘ:

Pπ,g,R̄,Ω(θt+1) =

∫

dθtdxt+1dwt π(θt+1, θt, xt+1)Ω(wt, θt) ×
[

R̄[B̄π,g,Ω(P(Θt))](xt+1,wt)
]

P(θt) (11)

whereΩ(wt, θt) ,
∏

i Ω
i(wi

t, θt).

V. OM

A. General considerations of optimal management

From now on, for simplicity we restrict attention to the case
where the players have exact state information, as in Sec. IV-
A. This means that we do not consider the effects of sensor
noise on player behavior.

Say we have amanager external to the players who at
eacht has a preference order over sequences of futureθ’s. So
the manager prefersπ’s, R’s, and g’s that are more likely to
produce desirable sequences ofθ’s, as determined by Eq. 7:

Pπ,g,R(θt+1 | θt) ,

∫

dxt+1 π(θt+1, θt, xt+1) [R(Bπ,g(θt))](xt+1)

(12)

(For the partial information case, dynamics overΘ is instead
given by the non-Markovian Eq. 11.)

Suppose that the manager can change some aspects of
π and/or g and/or R. Then at eacht the manager has an
optimization problem, of how to choose among its set of triples
y ≡ (π,g,R) to optimize the likely resultant sequences ofθ’s.
Note that since we are in the exact information case, we do not
allow the manager to distort the sensor inputs to the players.
(That would mean distortingΩ.) Similarly, it means we do not
consider the possibility of the manager modifying the inter-
player communication structure and/or command structure
(i.e., we do not allow the manager to change the extensive
game the players are engaged in).

As an example of this, the manager’s preference order might
be be a discounted sum of future rewards. This need not be
the case however. To illustrate this, note from Eq. 12 that for
any fixed y the transition matrixAy

, P(Θt+1 | Θt) is fixed
for all time. So for any fixedy, we have a Markov process
acrossP(Θ) ∈ ∆Θ with transition matrixAy and can analyze its
convergence properties. In particular, the manager might prefer
a sequence in∆Θ that eventually converges to a fixed point.
(Note this is a fixed point in∆Θ, not inΘ.) Furthermore, if by
settingy he can vary among a set of such fixed points{P(Θ∞) ∈
∆Θ}, then his preference ordering might lead him to prefer ones
that are centered about certain locations inΘ. He might also
prefer aP(Θ∞) that is stable, in that it is highly peaked, so that
in the infinite time limit (P(Θt) settles to a distribution under
which) θt has little variability. In addition to these aspects of
the fixed pointP(Θ∞), the manager might prefer a fixed point

that is stable under the Markovian dynamics. (This stability
in the Markovian dynamics is different from the stability of
a peaked fixed point; the first concerns∆Θ, and the second
concernsΘ.) He might also prefer that the dynamics converges
to the fixed point quickly from some initial distributionP(Θ0).

Given any such preferences, the simplest version of the
manager’s optimization problem is to find they ∈ Y such
that the associated Markov transition matrixAy has a fixed
point, and to optimize the location of that fixed point, its
stability, and how quickly it is achieved. There are more
sophisticated policies the manager might adopt however. For
example, it may be that by judiciously “mode-switching”
among the possibley as the system evolves, the manager can
induce the dynamics to go from the initialP(Θ0) to a desired
fixed point P(Θ∞) more expeditiously than it would if any
singley ∈ Y were used for the entire sequence.

Note that despite having a preference ordering and a move to
choose, the manager is not a player in the game. In particular,
there is no dynamics ofy. Rather the manager setsy from
outside of the system.

B. Algorithm overview

For simplicity, from now on we restrict attention to the
case where the preference order of the manager does not
depend on the full future sequence through the space of
games, involving fixed points, discounted sums of rewards,
or something similar. Rather, like the players, at everyt the
manager is only interested in optimizing (the expectation of)
an associated utility function ofθt+1. This restriction means we
do not need to explicitly considerθ-indexed effective utility
functions, game functions, or the like. We write the manager’s
utilty function asG : Θ→ R.

In practice, the manager may not know all relevant attributes
of the players and/or the rest of the system. In this case
the manager must estimate those attributes at run-time. Since
the underlying process is Markovian, this means taht the
manager’s problem is one of controlling a partially observable
Markov decision process. However since here at everyt the
manager is only concerned withθt+1 (rather than the whole
future sequence ofθ’s), we adopt a simpler approach.

To begin, parameterize the triple{π,g,R} that fixes Eq. 12
by (ζ, y). As before,y is the set of all parameters affecting
the behavior of the players and the system that the man-
ager can set.ζ is a set of other parameters outside of the
manager’s control that affect the behavior of the players and
system, but can be estimated from observational data. These
may include in particular parameters that characterize the
endogenous behavior of the players. For example,ζ might
specify the rationality of some playeri (suitably quantified),
or if the manager cannot modifygi , ζ could specifygi . Other
components ofζ might affect multiple players at once, by
modifying R, π and/or the parametric dependence ofg on y.
To formalize this we sometimes writegζ,y, Rζ,y, and/or πζ,y.

Any pair (ζ, y) specifies the dynamics overΘ, via Eq. 12.
So presuming the manager’s estimate ofζ is correct,
since ζ is independent ofy, the manager can determine



how varying y translates into variations in ˆσζ,y(xt+1, θt) ,
Rζ,y[Bζ,y(θt)](xt+1, θt). So the task for the manager is to find
the y that maximizes

E
y(G(θt+1) | θt) =
∫

dθt+1dxt+1 G(θt+1)πy(θt+1, θt, xt+1)
∏

i∈N

σ̂ζ,y,i(xi
t+1, θt) (13)

Often the manager will not be able to find this optimaly.
This may be due to ignorance of some of the distributions,
computational limitations, inability to estimate some relevant
components ofθt, etc. More generally, it may be that the
players are actually in a partial state information scenario, but
the manager cannot solve for they that optimizesEζ,y(Gt+1 |

wt) (e.g., due to ignorance ofΩ, or of wt).
In such situations we approximate how the joint behavorial

strategy and system dynamics depends ony and ζ with an
equilibrium model . This is a pair of counterfactual game and
(perhaps bounded rational) refinement functions,B̄ζ,y andR̄ζ,y.
Our presumption is that if we change the integrand in Eq. 13 to
involve those functions, the resultant dependence ofE

ζ,y(Gt+1 |

θt) on (ζ, y) accurately approximates the true dependence.
In practice, the manager might also estimate ˆσζ,y

′

(Xt+1, θt)
for the currentθt from observations. Doing that allows the
manager to avoid evaluatinḡRζ,y[B̄ζ,y(θt)], which typically
would require solving a coupled set of equations. Intuitively,
Nature solves the equations on behalf of the manager.6 In this
situation, the manager only has to solve for how the solution
R̄ζ,y[B̄ζ,y(θt) would change ify were to change (for the given
ζ. As illustrated below, this may reduce to the manager’s
estimating how the integrand in Eq. 13 varies withy, for the
given ζ. From now on we suppress theζ superscript.

C. Quantal Response Equilibria

We are interested in modeling players that are “bounded
rational”, i.e., who want to maximize their expected utilities
but are not able to do so. A popular model for this situation is
the Quantal Response Equilibrium (QRE) [10], [11]. Under the
QRE, the mixed strategy of playeri is a Boltzmann distribution
over her move-conditioned expected utilities:

σi(xi
t+1, θt) ,

eβ
i
E

y(gy,i
t+1|x

i
t+1,θt)

Ni(θt)
(14)

whereNi is the associated normalization constant,

Ni(θt) ,

∫

dxi
t+1 eβ

i
E

y(gy,i
t+1|x

i
t+1,θt). (15)

If at each t the objectives of the players involve future
trajectories throughΘ rather than just (as in this paper)θt+1,
then the exponents in the QRE equations should be changed
accordingly. Those exponents should also be changed if we
are in a partial state information setting rather than an exact
state information setting (by replacing eachEy(gy,i

t+1 | x
i
t+1, θt),

given by Eq. 6, withEy(gy,i
t+1 | x

i
t+1,w

i
t), given by Eq. 10).

6Sometimes the manager can even solicit ˆσζ,y
′
(Xt+1, θt) from the players.

Note that the QRE mixed strategy for playeri depends on
the mixed strategies of the other players, throughEy(gy,i

t+1 |

xi
t+1, θt). So the QRE is a set of coupled simultaneous equa-

tions. Brouwer’s fixed point theorem guarantees that there
is always at least oneσ that solves this set of equations.
Moreover, in the limit of βi → ∞, the QRE σi places
zero probability mass on any move that doesn’t maximizei’s
expected utility. Accordingly, asβi → ∞ for every playeri,
the QRE approaches a NE [10].

For eachi, the associated QRE equations can be expanded
as the|Xi | + 1 equations

σi(xi
t+1, θt) −

eβ
i
E

y(gy,i
t+1|x

i
t+1,θt)

Ni(θt)
= 0 ∀xi

t+1 (16)

Ni(θt) −
∫

dxi
t+1 eβ

i
E

y(gy,i
t+1|x

i
t+1,θt) = 0. (17)

where for all i,

E
y(gy,i

t+1 | x
i
t+1, θt) =

∫

dθt+1dx−i
t+1 gy,i(θt+1)πy(θt+1, θt, x

i
t+1, x

−i
t+1)
∏

j,i

σ j(x j
t+1, θt) (18)

By plugging Eq. 18 into Eq.’s 16, 17 and running over all
playersi, we specify the QRE as a set ofM ≡ N +

∑

i∈N |X
i |

coupled simultaneous equations. For fixedθt, there are a total
of M unknowns in those equations: theN normalization factors
{Ni} together with the

∑

i∈N |X
i | mixed strategy components of

the players,{σi(xi
t+1, θt)}. We can condense thoseM equations

in M unknowns into the following equation:

f (σ,N, y) = 0 (19)

whereσ is the vector of
∑

i∈N |X
i | probabilities{σi(xi

t+1, θt) :
i ∈ N , j ∈ |Xi |}, N is the vector ofN normalization factors,0 is
theM-dimensional vector of all 0’s, andf is anM-dimensional
vector-valued function. For anyy, the solution to Eq. 19 forσ
andN gives usσ̂ζ,y and the associated values{Ni}, respectively.

For simplicity, we model the player interaction as being a
QRE for some suitable set ofβi ’s. (Exploring more sophis-
ticated models is the subject of future work.) The set of the
βi ’s of all the players will compriseζ in our experiments. In
addition, everygy will be independent ofy; only πy depends
on y. The resultant dependence of the player mixed strategies
on y is captured in Eq. 19.

D. Moving the QRE fixed point

The manager’s expected utility is given by Eq. 13 where
eachσ̂ζ,y,i is given by Eq. 19. For a givenζ, the task of the
manager is to movey so that the resultantσ solving Eq. 19
optimizesEy(G(θt+1) | θt) as given by Eq. 13. In more detail,
as the manager changesy, he changes the values in Eq. 18,
which then changes the probabilities in Eq. 14. That in turn
changes expectedG, according to Eq. 13. The manager wants
to search overy’s to maximize this ensuing value of expected
G. The manager can do this using a gradient descent over
expectedG based on the following equation:



∂
∂yE

y(G(θt+1) | θt) =
∫

dθt+1dxt+1 G(θt+1)
∂

∂y
[

πy(θt+1, θt, xt+1)
]

∏

i∈N

σ̂ζ,y,i(xi
t+1, θt)

+
∫

dθt+1dxt+1 G(θt+1)πy(θt+1, θt, xt+1)
∂

∂y















∏

i∈N

σ̂ζ,y,i(xi
t+1, θt)















(20)

The first integral is what the manager’s estimate of the gradient
of expectedG would be if the manager were a “conventional
controller”, who presumes that ˆσζ,y,i(xi

t+1, θt) is some stationary
distribution. The second integral is the correction term intro-
duced if the manager accounts for the fact that the algorithms
setting eachqi are actually adaptive players who (under the
QRE model of their mutual adaptation) obey Eq. 19.

To compute the integrand terms in Eq. 20 involving partial
derivatives of the ˆσζ,y,i ’s, expand both sides of Eq. 19 that
equation to first order iny (i.e., use implicit differentiation):
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∂N
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= −
[

∂f
∂σ̂ζ,y

∂f
∂N

]−1 ∂f
∂y

(21)

(Note that in generaly is a vector, so for example∂f
∂y, ∂σ̂ζ,y

∂y ,
and ∂N

∂y are all matrices.) The solution to this equation gives
us the partial derivatives we need to evaluate Eq. 20.

Given these partial derivatives, we employ conjugate gra-
dient descent to updatey. An alternative is to use Newton’s
method; to do that one needs to compute the Hessian of the
QRE probabilities with respect toy, which can be done by
differentiating the solution for∂σ̂

ζ,y

∂y given by solving Eq. 21.
Note that in practice, when running this algorithm we can

ask the players (or observe their behavior) to determine their
joint mixed strategy for the currenty, σ̂ζ,y. So we don’t have
to solve the fixed point equation giving the QRE. Our descent
algorithms only require that can predict the dependence on the
position of the QRE ony. That means we only need to know
how π and the player utilities depend ony.

E. Experimental details

DHW: Note that in our experiments, we actually have a
partial information scenario, where wi

t is player i’s history
of moves and rewards. However we can’t write down
Ω tractably, and therefore instead approximate it and
its ramifications, with an exact information equilibrium
model. It is that model that we then manage.

Also, somewhere we must say how in our experiments,
we assume that whateverR is for the QRE that (approxi-
mates) our adaptive controllers, it is a smooth function of
y.

To illustrate the various concepts outlined, we consider a
simple problem of controlling a satellite inR2. The satellite
has two controllers (players) that each fire a thruster from a
set of four thrusters assigned to each of them. The resultant
displacement of the satellite is given by the vector addition of
the two thrusts from the two thrusters fired by the controllers.
In these experiments, the dynamics of the satellite corresponds

to πy(θt+1, θt, xt+1), whereθt represents the current state of the
satellite in theR2, and xt+1 is the two thrust vectors that are
chosen by the two controllers to fire at the next time step.
The eight possible thrust vectors are assigned an initial set
of angles. Figure 1 illustrates the satellite with the thrusters.
Each controller has its individual goal point where it wishes
to move the satellite to. The manager has its own objective
for moving the satellite.

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

       Satellite

            Controller 1’s
            possible thrust vectors

          Controller 2’s
          possible thrust vectors

Fig. 1. Satellite Control Example

Given that the two controllers are allowed to fire one thruster
each simultaneously, we implement the evolution of the satel-
lite’s trajectory as a repeated game. For this experiment,
we realized the two controllers as Boltzmann reinforcement
learners. Each of the four moves of both the controllers is
attached a utility value. As the system trajectory evolves,
the controllers update the utilities associated with each move
based on how close the moves get them to their individual
goals. At every time step, the controllers associate Boltzmann
probabilities to the moves based on the utilities associated with
those moves. Thus, moves with higher utilities are given a
higher probability, and moves with lower utilities are given
a lower probability. To guarantee exploration of all moves
including those with low utilities, the probabilities of the
individual moves have a set lower limit. If the equilibrium
probabilities specified by the Boltzmann distribution fallbelow
this limit, they are reset to this minimum threshold, and the
probabilities of the remaining moves renormalized to sum to
unity. This guarantees exploration of the move space along
with exploitation. The reinforcement learners also use data-
aging techniques to give more weight to the recent data versus
old data. In these experiments, we used exponential weighting
to update the utility values associated with each move. Thus,
the utility value for a particular move is given by a weighted
sum of the past utilities that the controller observes for that
move. The exponents of the weighting term are a function of
state and time. So an observed utility value that is based on
the system state that is closer to the current state, and not very
far back in time is given more weighting than a utility for the
move that was taken at a state further away from the current
state and farther back in time.



The manager, observing the behavior of the two controllers
and the evolution of the system states, needs to deduce the
model of the controllers’ interaction. For the current experi-
ment, the manager allows the controllers to operate without
updating the thruster angles. The manager then captures the
middle section of the trajectory along with the associated
moves of the two controllers. The manager then estimates the
rationality (βi) of the two controllers by optimizing the log-
likelihood objective function that maximizes the equilibrium
probabilities of a QRE model with the observed moves. The
manager, now, having a model of the interaction between
the two controllers, updates the thruster angles. This update
is carried out every five simulation steps. So the learning
controllers operate for five simulation steps, at which point
the manager updates the thruster angles. In these experiments
we employed the Newton’s method to update the thruster
angles. Every update corresponds to multiple internal update
steps, where the manager keeps on updating the angles till it
can no longer increase its objective function beyond a certain
prechosen threshold value.
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Fig. 2. Comparison of the Trajectories without (Blue) and with (Red) Active
Management of the Interaction between the Learning Controllers for Case 1
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Fig. 3. Comparison of the Manager’s Objective Function without (Blue)
and with (Red) Active Management of the Interactions betweenthe Learning
Controllers for Case 1

In this work, we consider two cases. The first case illustrates
the manager aiding the two players in achieving their common
goal. In this case, the initial thruster angles for both sets
of four thrusters are given to be (85◦,−85◦,95◦,−95◦) With
these angles, the thrusters have limited capability in moving
the satellite along theθ1 axis. Here we set up the situation
where both the controllers wish to move the satellite to the

position (2,2). Figures 2 and 3 illustrate the effect of the
manager, where the manager’s goal is also set up to be at
(2,2). Without the manager, the trajectory takes a very long
time to move along theθ1 axis. With the manager active, the
thruster angles are updated to move the satellite quickly tothe
desired position.
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Fig. 4. Comparison of the Trajectories without (Blue) and with (Red) Active
Management of the Interaction between the Learning Controllers for Case 2
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Fig. 5. Comparison of the Manager’s Objective Function without (Blue)
and with (Red) Active Management of the Interactions betweenthe Learning
Controllers for Case 2

In the second case, the thruster angles are given to be
(0◦,90◦,180◦,270◦) Thus, both controllers have full control-
lability to move the satellite in theR2 space. However, now
controller 1’s desired position is (2,2), controller 2’s desired
position is (2,-2), while the manager has a different goal (0,0)
from these individual goals of the two controllers. Figures
4 and 5 again illustrate the trajectory of the satellite with
and without active management along with the corresponding
values of the manager’s objective function for this case. We
note that in both the cases, the manager is successful in
achieving its objective.
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